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Abstract

We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from
the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We
also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal
environments, and found that genome size as well as genome size by temperature interactions significantly correlated with
survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size
accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in
life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in
metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists
within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation
accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that
potential fitness effects associated with genome size variation also depend on environmental conditions.
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Introduction

Genome size evolution is extensive and ubiquitous. However, the

mechanisms by which this occurs are poorly understood and hotly

debated, despite a wealth of information connecting genome size

shifts to numerous phenotypes, lineages, and abiotic environments

[1–16]. One critical component of this debate is whether selection

can act on genome size, or if it is a neutrally evolving cellular

character. Proponents of genome size evolution point to the

association of genome size with cell size and rate of cell division,

which impact phenotypes important to fitness [10,11,16–19]. For

instance, it has been suggested that Drosophila species with longer

development times tend to have larger genomes [10]. Similarly,

‘‘weedy’’ plant species have been hypothesized to have smaller

genomes and short generation times [18]. Recently, a review of the

genome size literature in numerous endothermic and ectothermic

species has made a strong case that genome size evolution could

play a role in temperature-size interactions, which could potentially

explain adaptive variation in numerous species [16]. While the

connection between genome size variation and phenotype is

generally recognized for order of magnitude changes in genome

size and for interspecific phenotype comparisons, there is little

evidence that these effects act on the relatively small magnitude of

variation in genome size expected within a species – especially in

non-plants. Alternatively, neutral factors such as founder effects and

random drift [15,19] and changes in insertion/deletion balance [13]

have been proposed as mechanisms for intraspecific changes in

genome size. Consequently, conflicting theories of genome size

evolution exist and neither camp has definitively documented the

potential for selection rather than chance as a driving force.

In order for selection to drive genome size evolution (either

directly or indirectly), variation in genome size must occur within a

species and be connected to a phenotype that impacts fitness. It is

for this reason that repeated attempts have been made to observe

conspecific variation in genome size [1–5]. Often they have been

linked to phenotypic analyses in wild individuals. However,

because the observed phenotypic variation is confounded with

environmental variation and because it is difficult to achieve high

levels of independently replicated genome size and phenotypic

measures from wild populations; it has been difficult to develop a

compelling case that genome size is associated with variation in

fitness related traits. In addition, some of these studies may also be

affected by environmental interactions with genome size measure-

ment technology (e.g. anthocyanin in plants can bias genome size

measures [20]). Accordingly, studies of wild individuals have not

resolved this debate.
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One of the more compelling selection-based arguments in the

recent genome size literature has linked nucleotypic effects

(genome size is connected with replication rate and cell size) of

genome size variation to thermal responses [16]. Many ectotherms

follow the temperature-size rule, where body size increases as

temperature decreases [21]. Drosophila species follow this rule [22]

and also demonstrate population-level differences in size (across

continents) that mirror this pattern, where strains derived from

cooler environments are also larger than those from warmer

environments [23–27]. Since this pattern has appeared on

numerous continents, it is clear that larger size at higher

latitudes/cooler temperatures is adaptive for Drosophila species.

Drosophila body size is also correlated with numerous other life

history traits in a manner that is not completely understood [28–

31]. A better understanding of how thermal plasticity in body size,

development time, and immature survival has evolved in

Drosophila would shed light on the evolutionary ecology of the

species. However, although the evolutionary history of the species

is well studied at the phenotypic and genomic level, and

interspecific observations of genome size-phenotype connections

exist [10], genome size variation has not been considered in studies

of the evolution of D. melanogaster.

Here, we take a quantitative genetic approach to address the

issue of conspecific genome size variation and its life history

consequences. We ask how an environmental variable, tempera-

ture, interacts with genome size to affect D. melanogaster
development. Previous studies have measured intraspecific varia-

tion, focusing on geographic-dependent variation in a small set of

intraspecific populations [1–5]. However, no studies to date have

addressed the effects of intraspecific genome size variation on life

history traits in a way that enables the measurement of phenotype

in multiple environments for a large number of individual

conspecific genotypes. Recently, such studies have been proposed

to investigate the role of genome size on thermal plasticity [16].

The availability of sequenced inbred strains from Raleigh, NC

natural populations (the Drosophila melanogaster Genetic Reference

Panel, DGRP, https://www.hgsc.bcm.edu/content/drosophila-

genetic-reference-panel [32,33]) allows for replicated, accurate

within-strain genome size estimates. In addition, the ease of

measuring life history traits in these strains at different rearing

temperatures makes D. melanogaster an ideal model organism for

determining the relationships among genome size, temperature, and

life history. Accordingly, we evaluated the extent of conspecific

variation in genome size among 211 DGRP inbred strains, selected

50 lines representing the 25 of the largest and 25 smallest genomes,

measured life history traits in all 50 of these lines, and asked if

genome size variation correlates with variation in development-

related life history traits or their environmental plasticity.

Results

Genome size varies significantly among inbred
Drosophila lines

We quantified genome size in females for 211 DGRP lines using

flow cytometry (Table 1, Table S1). We found considerable

variation in average genome size among these strains, with the

average genome size per strain ranging from a minimum of

169.7 Mbp and a maximum of 192.8 Mbp. The overall average

genome size was 175.5 Mbp, which agrees well with the estimated

genome size of 175 Mbp for the y w reference strain of D.
melanogaster [34]. Further, the population appears to be biased

toward the accumulation of large genomes (median = 175.1;

skew = 0.5) [33]. Two of the strains, DGRP_378 and DGRP_554,

were not included in the second release of the DGRP [33].

Interestingly, several of the large strains demonstrated instability in

genome size, such that the addition of replicate measures did not

reduce the within-strain standard error of genome size (Table 1).

To further demonstrate intraspecific variation in genome size,

we performed a flow cytometry analysis with co-processed samples

of a line with small genome size (DGRP_208, 169.7 Mb) and a

line with large genome size (DGRP_517, 181 Mb) [35]. The

histogram produced by co-processed females from these lines is

shown in Figure S1. The co-preparations show separate fluores-

cence intensity peaks that differ in position precisely as expected

from the genome size estimates (Table 1). Additional evidence of

differences was provided by comparison of the proportion of

under-replicated DNA in polytene tissues (Figure S2a,b) [36]. For

the strains shown, DGRP_208 (169.7 Mb) and DGRP_517

(181 Mb), 88% of the DNA is fully replicated (12% unreplicated)

in the smaller genome, while 86.2% of the DNA is fully replicated

(13.8% unreplicated) in the larger genome. The 1.8% increase in

the replicated sequences in the thorax represents 28% (3.18 Mb)

of the 11.3 Mb difference between the strains; the remaining 72%

(8.14 Mb) is under-represented in thoracic tissues suggesting a role

for both fully replicated and under-replicated sequences in genome

size expansion.

Drosophila life history traits are associated with genome
size

In order to take advantage of the observed variation in genome

size among inbred strains and examine the life history effects of an

increase or decrease of genome size, we reared 25 strains with

large female genomes and 25 strains with small female genomes

(Table 1) at three temperatures (20uC, 25uC, and 30uC) and

scored life history traits for each strain at each temperature

(Figures 1, 2, S3; Table S1). A significance test across all genome

size means of 211 strains derived from 1,052 measurements

showed the 25 strains with the large genomes differed significantly

from the 25 strains with the small genomes (Table 1) (t-test; P,

0.001). The life history traits of survival to pupation, minimum

Author Summary

Genome size evolution is ubiquitous, and–even after
decades of research–mysterious. There are two major
classes of hypotheses regarding genome size evolution,
those that attribute its causes to evolutionarily neutral
processes and those that suggest a role for selection.
Numerous correlations between genome size and fitness-
related phenotypes have been documented, suggesting
selection could play a role in genome size evolution.
Unfortunately, many of the effects in those studies are
confounded with factors that could provide alternative
explanations. Here, we show that 211 inbred strains of
Drosophila melanogaster exhibit abundant variation in
genome size, which correlates with life history traits in a
temperature-dependent manner. Gene expression analy-
ses suggest a role for differences in metabolism between
strains with large and small genomes. Thus, there is
genetic variation in genome size within D. melanogaster,
and this variation is connected to variation in environ-
mentally dependent life history traits. These observations
indicate that selection is indeed a potential mechanism by
which genome size can evolve. Our results also suggest
that higher levels of genetic architecture may explain
some of the genetic contribution to biologically important
complex traits and raise the possibility that nucleotide
quantity can contribute to phenotype in addition to
quality.

Temperature-Dependent Correlation of Genome Size with Fitness Traits
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Table 1. Variation in genome size in 50 selected DGRP strains with atypical genome sizes.

DGRP strain N
Average genome
size (Mb) s.e. Significance group(s)

Average genome
size - mean t-test (to mean) P-value

DGRP_38 6 192.8 10.1 A 17.3 0.15

DGRP_819 6 186.3 14.7 AB 10.8 0.52

DGRP_153 6 183.2 3.2 ABC 7.7 0.06

DGRP_40 6 181.2 1.1 BCD 5.7 0.004

DGRP_362 6 181.2 1 BCD 5.7 0.002

DGRP_892 6 181.1 3.3 BCD 5.6 0.15

DGRP_142 11 181.1 3.1 BCD 5.6 0.11

DGRP_517 11 181 0.7 BCD 5.5 0.00002

DGRP_837 5 181 0.7 BCD 5.5 0.001

DGRP_138 6 180.9 1.1 BCD 5.4 0.01

DGRP_93 6 180.8 1.1 BCD 5.3 0.01

DGRP_75 6 180.8 0.9 BCD 5.3 0.003

DGRP_26 6 180.8 1.4 BCD 5.3 0.02

DGRP_42 6 180.6 4.5 BCD 5.1 0.31

DGRP_391 6 180.4 1.3 BCD 4.9 0.01

DGRP_21 6 180.3 2.2 BCD 4.8 0.09

DGRP_45 6 180.2 0.7 BCD 4.7 0.001

DGRP_57 6 180.2 0.6 BCD 4.7 0.001

DGRP_69 6 180 0.4 BCD 4.5 0.0001

DGRP_101 6 179.9 0.8 BCD 4.4 0.002

DGRP_28 6 179.6 1.4 BCD 4.1 0.04

DGRP_705 6 179.5 1.2 BCD 4.0 0.02

DGRP_88 6 179.4 0.5 BCD 3.9 0.001

DGRP_790 6 179.2 1.1 BCD 3.7 0.03

DGRP_105 6 178.9 0.7 BCD 3.4 0.01

DGRP_820 3 172.9 0.7 CD 22.6 0.06

DGRP_377 6 172.8 1.1 CD 22.7 0.05

DGRP_307 3 172.7 0.3 CD 22.8 0.01

DGRP_360 3 172.7 0.3 CD 22.8 0.01

DGRP_441 6 172.7 0.7 CD 22.8 0.01

DGRP_555 6 172.7 1 CD 22.8 0.03

DGRP_786 5 172.6 0.6 CD 22.9 0.01

DGRP_195 5 172.5 0.6 CD 23 0.01

DGRP_237 7 172.5 0.4 CD 23 0.0003

DGRP_379 3 172.5 0.2 CD 23 0.004

DGRP_554 6 172.5 0.9 CD 23 0.02

DGRP_787 6 172.5 0.7 CD 23 0.01

DGRP_335 3 172.3 0.4 CD 23.2 0.02

DGRP_406 5 172.3 0.7 CD 23.2 0.01

DGRP_440 4 172.3 0.9 CD 23.2 0.03

DGRP_313 3 172.2 0.7 CD 23.3 0.04

DGRP_884 5 171.9 0.4 CD 23.6 0.001

DGRP_321 5 171.7 0.9 CD 23.8 0.01

DGRP_378 8 171.6 1 CD 23.9 0.01

DGRP_332 5 171.2 0.8 D 24.3 0.005

DGRP_595 5 171 0.5 D 24.5 0.001

DGRP_318 3 170.5 0.1 D 25 0.0003

DGRP_801 6 170.4 0.5 D 25.1 0.0001

DGRP_181 5 170.1 0.9 D 25.4 0.003
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pupation time, female pupal mass, and female eclosion time varied

significantly across strains and temperatures (Figures 1, S3; Table

S1). Survival to pupation strongly correlated with survival to

adulthood (r = 0.975); therefore, we report only survival to

pupation.

We fitted linear mixed models to the developmental phenotypes

that included fixed effects of genome size, temperature, and the

interaction between the two factors; as well as random effects

accounting for additive and non-additive strain effects and the

interaction between strain and temperature. We found substantial

variation in the effect of genome size on the plasticity of all non-

survival traits (Table 2). The magnitude and/or the direction of

the effects of genome size on these phenotypes were dependent on

the temperature, as evident by the significant interactions between

genome size and temperature (Figure 2; Table 2). The effects of

temperature on all four phenotypes were highly significant

(P = 0.0013 for survival to pupation; P,0.0001 for minimal

pupation time, female pupal mass, and female eclosion time). We

further tested the effect of genome size on the four phenotypes for

the three temperatures separately (Table 3). As expected when

there is no interaction between genome size and temperature, the

effect of genome size on survival to pupation was similar across all

three temperatures (Table 3). On the other hand, genome size only

affected the other traits in specific thermal conditions (Table 3).

We also evaluated and visualized the significant relationships

between phenotype and genome size on each temperature via

simple regression of phenotypic line means on genome size

(Figure 2, Table 4). The general conclusions from regressions did

not vary if outlier lines with extremely large genomes (Table 1)

were removed; therefore, all data were included in the analyses.

We estimated the proportion of phenotypic variation explained

by genome size by comparing variance component estimates with

or without genome size in the model for temperature/phenotype

combinations where the effect of genome size was significant

(Table 3). We found that genome size contributed between 6–23%

of the total variation in survival to pupation (Table 3), 17% of the

variation in minimum pupation time at 25uC, 14% of the variation

in female pupal mass at 20uC, and 5% of the variation in female

eclosion time at 20uC.

Given that genome size appeared to influence development in

an environment-dependent manner, we derived a basic measure of

the degree of plasticity in each phenotype and performed

regressions of plasticity against genome size (Figure 2E–G,

Table 4). There appears to be a complex relationship between

genome size and plasticity, such that large genomes are more

plastic or less plastic than small genomes, depending on the

phenotype. For example, minimum pupation time showed

genome size-dependent plasticity where large genomes were more

responsive to 20uC to 25uC thermal shifts, whereas small genomes

were more responsive to 25uC to 30uC shifts. For the most genome

size-sensitive phenotypes (e.g. survival to pupation) thermal

plasticity was relatively independent of genome size.

We further assessed correlations among all the phenotypes and

genome size using a principal component (PC) analysis (Table S2).

The first two PCs partitioned the data on the basis of genome size

and accounted for 21% and 16%, respectively, of the total

variation observed. The loadings of the first two PCs reflected the

correlation of genome size with phenotype (genome size correla-

tion to PC1 and PC2 was 20.23 and 0.18, respectively), and they

correctly partitioned all but a few lines into large or small genome

size groupings. Thus PC analyses upheld the general inferences

obtained from the mixed model analysis.

It is possible that genotype is confounded with genome size. For

example, if co-adapted suites of traits are associated with specific

chromosomes of different sizes, strains with small genome sizes

may also have distinct genotypically correlated phenotypes. If this

is the case, we expect lines within the large or small genome groups

would be more closely related to each other than lines between the

groups. Indeed, genome size is significantly correlated with

inversion karyotypes in the DGRP, and lines with the same

inversion karyotypes are slightly more related to each other [33].

However, inversions clearly do not completely explain genome size

variation, accounting for only ,0.5 Mb of the variation in genome

size [33]. To address the concern of relatedness among strains of

atypical genome size, we evaluated the pair-wise genomic

relatedness among lines. Relatedness between lines within the

large and small genome size groups is not higher than that

between groups, suggesting that the large and small genome lines

form a genetically homogeneous pool rather than two separate

clusters (Figure 3). This analysis, in combination with the fact that

the aforementioned mixed models were designed to account for

any confounding cryptic relationship among the lines, clearly

suggests that there are correlations of genome size with life history

traits that are independent of potential confounding genotypic

effects at a broad genome-wide scale.

Finally, to assess whether pleiotropic effects of QTLs affecting

both genome size and the phenotypes could explain the observed

correlation between genome size and life history traits, we tested

the effect of genome size conditional on the top five genetic

variants associated with genome size detected by a genome wide

association study (GWAS) [33]. Although the inclusion of top

GWAS hits diminished the significance of the association between

genome size and life history traits (Table 3), this result is expected

when there is a genuine association between genome size and life

history traits. Inclusion of the top GWAS hits does not fully

explain the effects of genome size on life history traits and actually

lowered the P-values for genome size associations at some

temperatures.

Genome size and gene expression
Genome wide variation in gene expression has been evaluated

using microarrays for a subset of the DGRP strains [37]. We

assessed whether there is variation in gene expression between

lines with small and large genomes. These observations can be

Table 1. Cont.

DGRP strain N
Average genome
size (Mb) s.e. Significance group(s)

Average genome
size - mean t-test (to mean) P-value

DGRP_208 10 169.7 0.3 D 25.8 0.000000002

The mean genome size for D. melanogaster females is 175.5 Mb. N = Number of females. Mb = Megabase. s.e. = Standard error of the mean in Mb. Significance groups (A,
B, C, D, etc.) differ at P,0.05 by a Duncan test. Average genome size - mean = deviation from the mean (175.5 Mb). t-test to the mean of 175.5 Mb determined
significant (P,0.05) variation from the mean. Note that some strains were not significantly different from the mean due to their high variance in genome size.
doi:10.1371/journal.pgen.1004522.t001
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used to guide further efforts to dissect mechanisms by which

genome size can lead to phenotypic differences. Comparisons

between microarray results of adult females of small genome

(DGRP_208, DGRP_307, DGRP_313, DGRP_335, DGRP_360,

DGRP_379, DGRP_555, DGRP_786, and DGRP_820), large

genome (DGRP_362, DGRP_391, DGRP_517, DGRP_705), and

more species-typical genome (DGRP_301, DGRP_303,

DGRP_304, DGRP_306, DGRP_315, DGRP_324, DGRP_357,

DGRP_358, DGRP_365, DGRP_375, DGRP_380, DGRP_399,

DGRP_427, DGRP_437, DGRP_486, DGRP_514, DGRP_639,

DGRP_707, DGRP_712, DGRP_714, DGRP_730, DGRP_732,

DGRP_765, DGRP_774, DGRP_799, DGRP_852, DGRP_859)

strains revealed 562 differentially expressed genes (Figure 4,

Tables S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13). One

hundred forty-nine genes were up-regulated in strains with small

genomes (Figure 4; Table S3); 227 genes were up-regulated in

strains with large genomes (Figure 4; Table S4). Strains with small

genomes down-regulated 91 genes (Figure 4, Table S5) while

strains with large genomes down-regulated 95 genes (Figure 4,

Table S6). Gene ontology enrichment analyses revealed that

strains with small genomes up-regulated genes related to

metabolism, mitosis, egg development, translation, and salt

transport (Tables S7, S9) and down-regulated genes related to

development and enzymatic activity (Table S11). The up-

regulated genes included ion binding genes that appear to be

differentially regulated during exposure to thermal and chemical

environments that affect oxidative stress [38]. Strains with large

genomes up-regulated genes involved with development, metab-

olism, TOR signaling, and heme and ion binding (Tables S8, S10)

while down-regulating primarily genes affecting gametogenesis

(Tables S12, S13). Many of the enriched genes were expressed in

the digestive system. This suggests, (in combination with the

increased expression of metabolism and TOR signaling genes in

strains with large genomes), that nutritional ecology plays an

important role in these responses.

Drosophila chromosomal inversions are classically understood to

clinally segregate in an adaptive fashion [39,40] and some of the

phenotypes we studied can vary along clines [23–27]. Of the

strains evaluated for gene expression, none of the large genomes

contained known inversions (Table 5). In the expression compar-

ison, inversions do not obviously explain differences in gene

expression between large and small genomes.

Discussion

The role of natural selection in the evolution of genome size

evolution is hotly debated. If natural selection directly or indirectly

affects the evolution of genome size, genomes must vary

conspecifically and be connected to adaptive phenotypes like life

history traits. By measuring genome sizes of 211 inbred D.
melanogaster strains derived from a single population, we

document the presence of conspecific genome size variation, and

the association of genome size with several life history traits in

strains with the most extreme genome sizes. Only a few previous

studies examined the correlation between genome size and

organismal phenotypes [1,5]. Here, we provide evidence of

complex correlations between genome size and multiple life

history traits in an experiment that affords greater resolution of

genome size – phenotype connections than is possible with studies

of wild individuals (Figures 1, 2).

A major conclusion of our study is that genome size appears to

contribute a significant proportion of variation in life history traits

in an environmentally dependent manner (Figures 1–2, Tables 2–

4, S2). Genome size effects ranged from 5%–23% depending on

the trait and temperature. These estimates were obtained after

accounting for the additive and non-additive genotypic effects of

strains. PC analyses uphold the general interpretations of the

linear models and separate the phenotypic data based on genome

size, with the first two principal components correlating with

genome size. This study was not designed to infer the mechanisms

or nature of the plastic responses, only to demonstrate their

existence. More detailed studies investigating the details of this

phenomenon are warranted.

Future efforts should be targeted toward understanding the

degree to which genome size effects are rooted in the ‘‘quality’’

versus ‘‘quantity’’ of the genome. While the reported results could

be due to molecular changes in metabolism necessary to maintain

a larger genome, these metabolic effects cannot currently be

definitively disentangled from the fact that they could be

associated with adaptive chromosomes of different sizes (such as

the inversions on chromosome 3R in the small genomes).

However, the fact that our analyses accounted for genomic levels

of relatedness among the studied strains suggest that both genome

size and genotypes of strains with the largest and smallest genome

sizes contribute to variation in our target phenotypes.

We assessed the effect of female genome size on female-specific

(pupal mass and eclosion time) and non-sex-specific (pupal

survival, minimum pupation time, and adult survival) traits. Thus,

it is possible (depending on the mechanism of our observations)

that females and males have divergent genome size-dependent

phenotypic responses. It should be noted that, since females and

males exhibit sexually dimorphic life history traits [41–44], which

can have a different optimum for each sex, it will be interesting to

assess whether dimorphism in genome size exists and if it is a

mechanism by which the sexes can manage conflicts in life history

trait optima.

The DGRP consortium conducted a genome wide association

study on genome size with the data produced by this project, along

with a suite of complex quantitative traits [33]. Using linear mixed

models, relatedness among individuals in genome-wide association

studies is accounted for by estimating average levels of genomic

similarity, before genetic associations with phenotype are identified

[45]. Interestingly, variation in genome size is correlated with

inversions in the DGRP, and correction for inversion karyotype

associations resulted in the identification of several strong

associations of genetic variants with genome size. When there is

evidence of a genome size effect on a phenotype, the results of our

work suggest that it may be appropriate to incorporate genome

size into mapping efforts. Potential correction for genome size

effects in mapping experiments may include using genome size as

a cofactor (as observed in [45] for alleles of the frigida locus in

Arabidopsis thaliana) and incorporating genome size as a

correlated phenotype (as described in [46]).

Figure 1. Changes in temperature alter development of D. melanogaster with small or large genomes. For each of the 25 small genome
strains (red) and the 25 large genome strains (blue), the average survival to pupation (A), minimum pupation time (B), female pupal mass (C), and
female eclosion time (D) was measured at 20uC, 25uC, and 30uC. Averaging the small genome strains (red) or the large genome strains (blue) for each
phenotype shows temperature- and genome-size specific effects on survival to pupation (E), minimum pupation time (F), female pupal mass (G), and
female eclosion (H). Increased genome size is associated with decreased survival to pupation (A, E) and increased female pupal mass (C, G). Dashed
lines represent 95% confidence intervals.
doi:10.1371/journal.pgen.1004522.g001
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In theory, inbreeding should have just partitioned genome size

variation among the strains of the DGRP, revealing genome size

variation in a manner that allowed us to repeatedly sample

genome size and phenotype from the same genotype. However,

one could imagine that inbreeding might itself be a cause of

genome size variation, which is a caveat that must be considered in

this experiment. As a consideration to the strains analyzed, given

the bias in strain maintenance (healthy strains were maintained

preferentially), an inbreeding effect on genome size should be

limited in its effect on fitness. In addition, if genome size shifted

with the creation of the strains, it must be remembered that there

were deviations from the average genome size in both directions.

This would indicate support for Lynch’s proposal that genome size

evolution is due to genetic drift [15,19]. However, given our

observation that variation in genome size is associated with several

life history traits, we speculate that variation in genome size

created by neutral processes may be reinforced in some instances

by non-neutral forces.

It is also possible that inbreeding could result in the fixation of

alleles that pleiotropically affect life history traits and genome size.

Such pleiotropic effects could drive an association between

genome size and life history traits. Indeed, top GWAS hits of

genome size variation explained some, but not all, of the

association between genome size and life history traits (Table 3).

However, this is a necessary statistical outcome even when the

variation in the life history traits is entirely caused by genome size

variation. In fact, in the event that genome size is causal for the life

history traits, any QTL for genome size would appear to be

pleiotropic for the life history traits. Whether the variation in life

history traits is caused independently by the pleiotropic QTLs or

by variation in genome size must be addressed by breaking the

pleiotropic QTLs into independent ones, which may or may not

be possible and is beyond the scope of the current study.

In conclusion, we observed significant variation in genome sizes

among sequenced D. melanogaster strains; and large and small

genome sizes correlated with conspecific variation in life history

traits. These results indicate that a portion of phenotypic variation

may be due to genome size effects (potentially up to 23%, in a trait

and environment dependent manner). What is even more

interesting is that genome size variation appears to be associated

with phenotypic plasticity in several traits, suggesting that the

evolution of genome size may produce novel correlations among

life history traits in a temperature-dependent manner. These

observations support the recently proposed link between genome

size and thermal plasticity [16] and advance our understanding of

life history trait correlations. This research indicates that studies of

genome size evolution can contribute to two major problems in

biology: elucidating the genetic architecture of complex pheno-

types and identifying mechanisms of life history trait evolution.

Materials and Methods

We examined 211 D. melanogaster strains obtained from the

Drosophila melanogaster Genetic Reference Panel (https://www.

hgsc.bcm.edu/content/drosophila-genetic-reference-panel) and

Bloomington Drosophila Stock Center (flystocks.bio.indiana.edu).

Of these 205 are reported in the most recently released genomic

data for the DGRP [33]. Stocks were maintained at room

temperature on Bloomington’s standard medium (The Blooming-

ton Drosophila Stock Center, Indiana University; Table S14).

Measuring, testing, and verification of genome size
differences

We estimated genome size of 1,052 individual females from the

211 inbred D. melanogaster strains using flow cytometry, using D.
virilis (1C = 328 Mb) as an internal standard. The final concentra-

tion of propidium iodide stain was 25 mg/mL [47]. In brief, samples

were prepared from a single adult female head that was

homogenized in Galbraith buffer using a Dounce tissue grinder

and nylon mesh filtration. Samples were incubated at 4uC for

approximately 30–60 minutes in 25 mg/mL propidium iodide. Flow

cytometry measured 1,000 cell counts per unknown and control

sample. Genome size of the unknown = GScontrol6PI2fluorunknown/

PI-fluorcontrol where PI-fluor is the channel number of red propidium

iodide (PI) fluorescence [47]. Mean genome size averages were

compared using Proc GLM with Duncan multiple range tests in

SPSS (SPSS Inc. Version 16.0, Chicago, IL) and t-test comparisons

to the population mean. Genome size differences between large and

small genome strains were verified [20] by co-preparation of an

individual from a high (DGRP_517) with one from a low

(DGRP_208) genome size line. The extent of under-replication in

polytene tissues of high and low genome size lines was scored using

thoracic tissues prepared as described for genome size estimates [36].

Assessing developmental phenotypes
In order to maximize the variation in genome size and the

phenotypic variation, 25 strains with large female genomes

Figure 2. Genome size and temperature affect D. melanogaster development and plasticity. Only phenotypes with significant R2 values
(the proportion of variation in each phenotype due to genome size variation, not accounting for other genetic effects) are depicted. The average
survival to pupation (A), minimum pupation time (B), female pupal mass (C) and female eclosion time (D) is shown for the 25 strains with the largest
and smallest genomes at 20uC (blue triangle), 25uC (green circle), and 30uC (red square). Plasticity for minimum pupation time (E), female pupal mass
(F) and female eclosion time (G) is shown between 20uC and 30uC (turquoise diamond), 20uC and 25uC (purple x) and 25uC and 30uC (orange star).
Dashed lines represent 95% confidence intervals of the regression line.
doi:10.1371/journal.pgen.1004522.g002

Table 2. Test for the effect of an interaction between genome size and temperature on life history traits.

Trait Numerator df Denominator df F value P-value

Survival from egg to pupa 2 560 0.20 0.8213

Minimum pupation time 2 566 6.98 0.0010

Female pupal mass 2 575 3.13 0.0446

Female eclosion time 2 675 6.03 0.0025

df: degrees of freedom.
doi:10.1371/journal.pgen.1004522.t002
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(DGRP_21, DGRP_26, DGRP_28, DGRP_38, DGRP_40,

DGRP_42, DGRP_45, DGRP_57, DGRP_69, DGRP_75,

DGRP_88, DGRP_93, DGRP_101, DGRP_105, DGRP_138,

DGRP_142, DGRP_153, DGRP_362, DGRP_391, DGRP_517,

DGRP_705, DGRP_790, DGRP_819, DGRP_837, and

DGRP_892) and 25 strains with small female genomes

(DGRP_181, DGRP_195, DGRP_208, DGRP_237, DGRP_307,

DGRP_313, DGRP_318, DGRP_321, DGRP_332, DGRP_335,

DGRP_360, DGRP_377, DGRP_378, DGRP_379, DGRP_406,

DGRP_440, DGRP_441, DGRP_554, DGRP_555, DGRP_595,

DGRP_786, DGRP_787, DGRP_801, DGRP_820, and

DGRP_884) [33] were chosen for phenotypic analysis. Male and

female flies from these strains were passaged to perforated egg-

laying bottles with a 35 mm grapefruit plate (10% grapefruit juice,

1% EtOH) and provided a small amount of yeast paste.

Oviposition occurred at room temperature. Eggs were collected

two hours after introduction of females. Seventy-five eggs were

placed in vials containing Bloomington’s standard medium (The

Bloomington Drosophila Stock Center, Indiana University; Table

S14) for all experiments. Vials were placed in a 20uC, 25uC, or

30uC incubator under a 12-hr light:dark cycle with 70% humidity.

Ten replicate vials were set up for each strain at each temperature;

three vials were used to measure pupal phenotypes (survival from

egg to pupa, minimum pupation time, and female pupal mass) and

three vials were used to measure adult phenotypes (survival from

egg to adult, and female eclosion time). Survival to pupation or

adulthood was calculated as the number of total pupae or adults

produced, respectively, divided by 75, the number of eggs in each

vial. Vials with high egg mortality, which was rare, were not used

in calculating survivorship. Minimum pupation time was mea-

sured as the time elapsed from when eggs were placed into the vial

until the emergence of the first pupal case at an 8 hour temporal

resolution. A total of 50 females (10 per vial) per strain at each

temperature were weighed individually to calculate female pupal

mass. Eclosion was recorded at 8:00 AM, 2:00 PM, and 8:00 PM

each day to calculate the average eclosion time of each female in

each vial.

For each phenotype, the significance of genome size and

temperature effects, as well as their interaction, was determined

using the MIXED procedure in SAS. We first assessed the

significance of genome size by temperature interaction by fitting

the following model, y = m+g+T+g:T+s+S+S:T+e, where y is the

phenotype being modeled, m is the overall mean, g is the fixed

effect of genome size of the strain, T is the fixed effect of

temperature on which the flies are raised, g:T is the interaction

between genome size and temperature, s is the random additive

genetic effect with the covariance matrix determined by the pair-

wise genomic relationships between strains, S is the random strain

effect which accounts for additional variation between strains, S:T
is the interaction between strain and temperature, and e is the

residual. When testing the effect of genome size on life history

traits in the three temperatures separately, a reduced model was

fitted, y = m+g+s+S+e and the effect of genome size was tested by

type III F test. We also tested the effect of genome size on life

history traits conditional on the five most significant genetic

variants associated with genome size variation in a GWAS

(X_21136189_SNP, 3L_5383897_SNP, 2L_6541787_SNP,

2L_6035179_SNP, 3R_19140723_SNP) [33] by including their

genotypes in the model as fix effects.

Plasticity was scored three ways. First, we subtracted the mean

of each phenotype from each strain at 30uC from the phenotype of

that strain at 20uC. Second, we subtracted the mean of each

phenotype from each strain at 25uC from the phenotype of that

strain at 20uC. Finally, we subtracted the mean of each phenotype
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from each strain at 30uC from the phenotype of that strain at 25uC.

This resulted in 50 measurements for each metric of pair-wise

plasticity, which were regressed against genome size using Linear

Regression in SPSS (SPSS Inc. Version 16.0, Chicago, IL). All of the

aforementioned measures were done with line means as genome

size and phenotype were not scored in the same individuals. Finally,

PC analyses were also performed using SAS software to assess

correlations among the phenotypes and genome size.

Evaluating relatedness within and between strains with
large and small genomes

Pairwise relatedness was extracted from the second release of

genomic data from the DGRP [33]. Genome-wide levels of

relatedness were calculated for all of the strains in that project,

including some that have not been identified for further analyses

because they exhibited signatures of relatedness to others whose

genomes had already been sequenced [48]. Reported here are the

relevant levels of genomic relatedness among the strains of atypical

genome size. These values were used to generate Figure 3.

Assessing genome size-specific gene expression
A previous study used microarray analysis to determine gene

expression changes in a subset of the DGRP lines [37]. Briefly,

RNA was extracted from two independent pools of 25 three to five

day old flies per sex per line during the same two hour window

each day. They were only evaluated in one environment. RNA

extraction, labeling, and hybridization was randomized, and

normalized values of gene expression were determined using

median standardization [37]. We focused on the female micro-

arrays. Of the 40 strains analyzed, nine had small genomes

(DGRP_208, DGRP_307, DGRP_313, DGRP_335, DGRP_360,

DGRP_379, DGRP_555, DGRP_786, DGRP_820), four had

large genomes (DGRP_362, DGRP_391, DGRP_517,

DGRP_705), and the remaining 27 had average-sized genomes

(DGRP_301, DGRP_303, DGRP_304, DGRP_306, DGRP_315,

DGRP_324, DGRP_357, DGRP_358, DGRP_365, DGRP_375,

DGRP_380, DGRP_399, DGRP_427, DGRP_437, DGRP_486,

DGRP_514, DGRP_639, DGRP_707, DGRP_712, DGRP_714,

DGRP_730, DGRP_732, DGRP_765, DGRP_774, DGRP_799,

Table 4. Results of regression analyses of thermal plasticity of life history traits by genome size.

Phenotype 206C–306C 206C–256C 256C–306C

Survival from egg to pupa NS NS NS

Minimum Pupation Time NS *** ***

Female Pupal Mass NS * NS

Female Eclosion Time ** ** NS

*P,0.05;
**P,0.01;
*** P,0.001;
NS = not significant P.0.05.
doi:10.1371/journal.pgen.1004522.t004

Figure 3. Genomic relationship among and between the large and small genome groups. (A) A heat map depicting the genomic
relationship between DGRP lines. Genome size is ordered decreasingly from left to right and bottom to top. The strains in the groups are indicated as
the red and blue rectangles on the top of the heat map. (B) Histograms showing genomic relationships within and between the genome size groups.
doi:10.1371/journal.pgen.1004522.g003
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Figure 4. Genome size-associated changes in gene expression. Box plots highlight the most up-regulated and down-regulated genes based
on comparisons between small (red), average (green), and large (blue) genome strains. (A) MetallothioneB (MtnB) (B) Related to the N terminus of tre
oncogene (RN-tre). (C) CG4415. (D) Cyp12d1-d. (E) CG17192. (F) AttacinA (AttA).
doi:10.1371/journal.pgen.1004522.g004
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DGRP_852, DGRP_859).We extracted expression values for each

strain (averaged across each strain’s replicates) using the PM-MM

algorithm of dChip (one nucleotide between the probe and target

sequence is mismatched) [49]. We focused on genes with

expression levels greater than 50. We used cyber-T Bayesian t-
tests [50] (P,0.05) and false discovery rate [51] (FDR,0.05)

analyses to determine significant changes in gene expression.

Genes that were identified as being up-regulated in small genomes

showed increased expression in strains with small genomes

compared to 1) strains with average genomes and 2) strains with

large genomes. Genes were deemed as down-regulated in small

genomes when they were down-regulated in strains with small

genomes compared to 1) strains with average genomes and 2)

strains with large genomes. We followed similar criteria for up or

down-regulated genes in large genomes. We assessed significant

enrichment of gene ontology terms using DAVID Functional

Annotation Tool [52,53] and GO Finder [54]. Each gene list (up-

regulated in small genomes, down-regulated in small genomes, up-

regulated in large genomes, and down-regulated in large genomes)

was compared independently to the D. melanogaster genome to

assess enrichment (P,0.05) of biological processes, cellular

components, and molecular functions.

Supporting Information

Figure S1 Large and small genomes have distinct genome size

differences. Co-preparations of individuals from a strain with large

genome size and a strain with small genome size show two distinct

genome size peaks. Each peak is in position expected for the

respective strains, confirming the differences between genome

sizes.

(TIF)

Figure S2 Euchromatin levels vary between small and large

genomes. Total DNA differences between strains include sequenc-

es that are and are not replicated in polytene thoracic tissues.

Eighty-eight percent of the DNA is replicated in the smaller

genome (DGRP_208) (A), while 86.2% of the DNA is replicated in

the larger genome (DGRP_517) (B).

(TIF)

Figure S3 Box plots depicting genome size and temperature

effects on D. melanogaster development. Survival (egg to pupa)

(A), minimum pupation time (B), female pupal mass (C), and

female eclosion time (D) is shown for the small and large

genome size strains at 20uC (green), 25uC (blue) and 30uC
(red).

(TIF)

Table S1 Genome size and phenotype data for the experiment.

(XLSX)

Table S2 Results from a principal component analysis of the

phenotype and genome size data.

(DOCX)

Table S3 Genes up-regulated in strains with small genomes.

(XLSX)

Table S4 Genes up-regulated in strains with large genomes.

(XLSX)

Table 5. Chromosomal inversions in the 50 lines evaluated for thermal responses of life history and gene expression.

DGRP strain Chromosome 2 Inversions Chromosome 3 Inversions Average genome size (Mb)

DGRP_38 In(3R)K [het] 192.8

DGRP_837 In(2L)t 181.0

DGRP_138 In(3R)P 180.9

DGRP_93 In(2L)t 180.8

DGRP_26 In(2L)t 180.8

DGRP_69 In(2R)NS In(3L)Y [het] 180.0

DGRP_101 In(2L)t [het] 179.9

DGRP_28 In(2R)NS 179.6

DGRP_88 In(2L)t [het] 179.4

DGRP_105 In(3R)K 178.9

DGRP_820* In(3R)Mo 172.9

DGRP_377 In(2L)t [het]; In(2R)Y2 [het]; In(2R)NS [het] 172.8

DGRP_555* In(3R)Mo 172.7

DGRP_786* In(3R)P 172.6

DGRP_554 In(3R)Mo 172.5

DGRP_237 In(2L)t [het]; In(2R)NS [het] 172.5

DGRP_406 172.3

DGRP_335* In(3R)Mo [het] 172.3

DGRP_440 In(3R)K [het] 172.3

DGRP_313* In(2L)t 172.2

DGRP_884 In(3R)P [het] 171.9

DGRP_595 In(2L)t [het] 171.0

Data are from Ref [33]. [het] = heterozygous for the inversion; K = Kodani; Mo = Missouri; NS = Nova Scotia; P = Payne; Y = Yutaka; Y2 = Yutaka #2.
* indicates strains that were used in gene expression analyses.
doi:10.1371/journal.pgen.1004522.t005
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Table S5 Genes down-regulated in strains with small genomes.

(XLSX)

Table S6 Genes down-regulated in strains with large genomes.

(XLSX)

Table S7 Gene ontology analysis results from DAVID of genes

up-regulated in small genomes.

(XLSX)

Table S8 Gene ontology analysis results from DAVID of genes

up-regulated in large genomes.

(XLSX)

Table S9 Gene ontology analysis results from GOFinder of

genes up-regulated in small genomes.

(XLSX)

Table S10 Gene ontology analysis results from GOFinder of

genes up-regulated in large genomes.

(XLSX)

Table S11 Gene ontology analysis results from DAVID of genes

down-regulated in small genomes.

(XLSX)

Table S12 Gene ontology analysis results from DAVID of genes

down-regulated in large genomes.

(XLSX)

Table S13 Gene ontology analysis results from GOFinder of

genes down-regulated in large genomes.

(XLSX)

Table S14 Drosophila diet composition.

(DOCX)
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